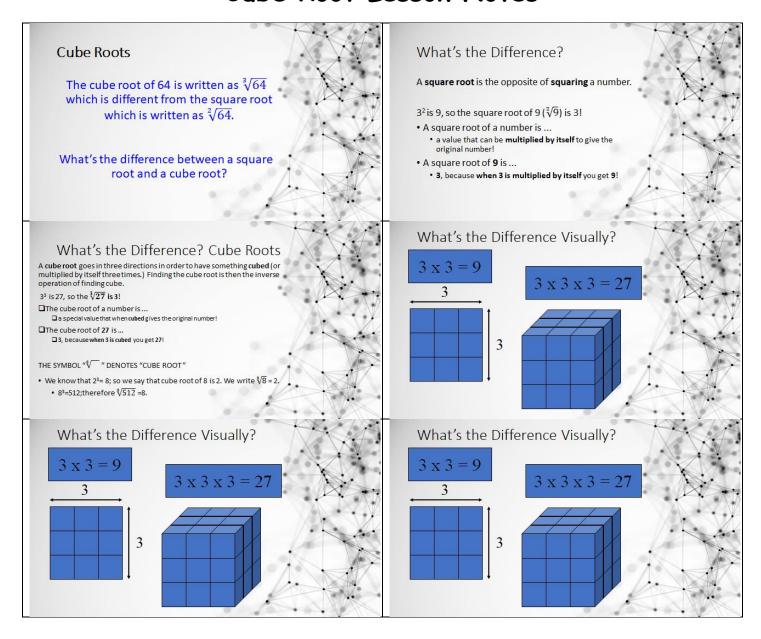

Grade 6 Gifted Day 2


8.EEI.2 Investigate concepts of square and cube roots.
b. Evaluate square roots of perfect squares.
c. Evaluate cube roots of perfect cubes.
I can evaluate perfect square roots and perfect cube roots.
What are other real-world situations that could benefit using square and cube
roots?
No additional resources needed. However, all answers should be written on a
separate sheet of paper.
1. Complete at least 3 topics of your ALEKS pathway. (if available)
Review attached notes and complete the practice problems.
3. Complete the "Today's Thought" activity.

NOTE: For additional practice aligned to your grade for SC READY review please refer to the 6^{th} grade level assignments.

Square Root Lesson Notes

Cube Root Lesson Notes

Today's Thought

1. Adele knows the area of a square to be 144 cm². If s^2 = 144, what is the value of s?

2. What value is the solution of the equation $x^3 = 125$?

3. Which expression has the greatest value when simplified?

a.
$$-\sqrt[3]{27}$$

c.
$$(-3)^3$$

d.
$$-\sqrt{81}$$

4. Which list is ordered from *least* to *greatest*?

a.
$$(-64)^3$$
, $-\sqrt{64^2}$, $(64)^{-2}$, $\sqrt[3]{64^3}$

b.
$$(-64)^3$$
, $-\sqrt{64^2}$, $\sqrt[3]{64^3}$, $(64)^{-2}$

c.
$$-\sqrt{64^2}$$
, $(-64)^3$, $(64)^{-2}$, $\sqrt[3]{64^3}$

d.
$$(64)^{-2}$$
, $\sqrt[3]{64^3}$, $-\sqrt{64^2}$, $(-64)^3$